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Abstract

This article develops an expression that relates perturbation in ion axial secular frequency to geometric aberration, space
charge, dipolar excitation, and collisional damping in nonlinear Paul trap mass spectrometers. A multipole superposition model
incorporating hexapole and octopole superposition has been adopted to represent field inhomogeneities. A uniform charge
density distribution has been assumed for characterizing space charge. Dipolar excitation has been represented as a forcing
term weighted by dipole superposition, and damping is represented in terms of reduced collision frequency in the equation of
ion motion. The perturbed secular frequency of the ion has been obtained by using a modified Lindstedt–Poincare´ perturbation
technique. The expression for perturbed frequency adequately reflects the reported experimental and simulation results.
Perturbation is sign sensitive for octopole superposition and sign insensitive for hexapole superposition. Larger shifts occur
with octopole aberrations. Perturbation of secular frequency based on the number of ions is mass dependent. Lower masses
show larger negative frequency shifts with an increase in the number of ions within the trap. Dipolar excitation potential shifts
the secular frequency in the positive direction and is larger for lower masses than for higher masses. Damping plays a minor
role in shifting the secular frequencies. The shift increases as we increase the pressure of the bath gas. The shift in ion secular
frequency with the axial distance from the center of the trap shows quadratic variation. (Int J Mass Spectrom 197 (2000)
263–278) © 2000 Elsevier Science B.V.
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1. Introduction

The fundamental motional frequency of ions in the
axial and radial directions in an ideal Paul trap,
referred to as the ion secular frequency,vu, is
computed from the equation

vu 5 buV/ 2 (1)

where V is the angular frequency of the rf drive
potential applied to the central ring electrode andbu is
a parameter determined from the Mathieu parameters
au and qu where the subscriptu refers to axial and
radial directions.bu is computed either from an
implicit expression involvingbu, au, andqu related
by a continuous fraction relationship [1,2], or in* Corresponding author. E-mail: agmenon@isu.iisc.ernet.in
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pseudopotential well approximation when the value of
qu is less than 0.4, it can be computed from the
adiabatic or Dehmelt approximation [3,4]

vu 5 Sau 1
qu

2

2 D
1/2 V

2
(2)

In ideal Paul traps, the field inside the trap varies
linearly and the decoupled radial and axial equation of
ion motion can be represented by the Mathieu equa-
tion [5,6]. In experimental traps, however, field dis-
tortions are caused by misalignment in the trap
geometry and other factors, such as space charge and
dipolar excitation, as in resonance ejection studies.
Damping of ion motion due to the presence of buffer
gas further complicates the equation of ion motion
that now takes the form of a forced Duffing oscillator
with damping. Some interesting consequences of
having nonlinear terms in the equation of motion
include perturbation of secular frequency from its
ideal value [7,8], appearance of harmonics [9,10],
coupling of secular frequency with the angular fre-
quency of the rf drive [11], as well as coupling of
radial and axial motion [12].

Perturbation of the secular frequency of ions in
nonlinear Paul traps is a topic that has received
considerable attention in literature, and will also be
the focus of this article. Resonance ejection experi-
ments [13] and broadband image current detection of
ions [14] are examples of experiments in which the
exact degree of frequency perturbation must be
known for accurate mass assignment. The technique
for generating tailored waveforms [15,16] for isolat-
ing targeted ions is another experiment where accu-
rate frequency information is required for synthesiz-
ing a broadband excitation signal with a “notch” at the
secular frequency of the targeted ions.

Several simulation studies are available in litera-
ture for characterizing the motion of ions in practical
traps. Some of these include the integrated system for
ion simulation (ISIS) program by Londry et al. [17],
simulation program for quadrupole resonance (SPQR)
by March et al. [18,19], and a multiparticle simulation
program (ITSIM) for examining the effects of higher
order fields, gas collisions, and ion–ion interactions in

practical traps has been detailed by Bui and Cooks
[20]. With the availability of clear experimental evi-
dence of frequency perturbation in nonlinear Paul
traps, we feel that it is now possible to correlate these
observations into a single expression that relates the
degree of frequency perturbation to experimental and
practical constraints. Such an expression would help
not only in developing an understanding of the inter-
dependence of these effects but also, in a practical
sense, offer a relationship that could be used to
calibrate mass spectrometers. This article reports such
an expression to understand the combined influence of
geometric aberrations, space charge, dipolar excita-
tion potential, and damping on the secular frequency
of ions within a nonlinear Paul trap.

2. Method of analysis

To compute the perturbation in ion secular fre-
quency caused by different experimental and practical
constraints, we need to first develop an equation of
motion that incorporates terms corresponding to geo-
metric aberration, space charge, damping, and dipolar
excitation. Such an equation will contain nonlinear
terms arising due to field inhomogeneity, a damping
term proportional to ion velocity, and a forcing term
with an angular frequency corresponding to dipolar
excitation. In nonlinear systems the natural frequency
of the system will be different from the secular
frequency of the ideal system (v0) by an amount that
depends on the weights of the nonlinear superposi-
tions [5]. In such systems it has been shown by
Makarov [21] that the frequency at which energy is
taken up by the oscillating ion is different from the
ideal ion secular frequency and corresponds to the
point on the frequency response curve at which the
“jump” phenomenon occurs. In general, the shifted or
perturbed frequency may be lower or higher than the
ideal secular frequency depending on the specific
inhomogeneities of the system and for resonance to
occur in practical traps the frequency of dipolar
excitation used in resonance ejection studies corre-
sponds to this perturbed frequency. In what follows,
we will present the expressions used in the present
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study for characterizing geometric aberration, space
charge, dipolar excitation, and damping that will be
incorporated in the equation of ion motion within the
trap.

2.1. Geometrical aberration

The potential distribution inside the trap due to rf
potential can be represented by orthogonal Legendre
polynomials with spherical and rotation symmetry in
such a way that it satisfies the Laplace equation. In
our computations, the weights of different multipoles
are calculated using the data given by Beaty [22].
Wang et al. [23] and Brown and Gabrielse [24] have
also followed a similar scheme to incorporate the
multipole terms in the potential functions.

If Pn is the Legendre polynomial of ordern, then
the potential distribution inside the trap,f(r, u, w), in
terms of spherical coordinates is given by

f~r, u, w! 5 f0 O
n50

`

An

rn

r0
n Pn~cosu ! (3)

where

r2 5 z2 1 r2 (4)

r and z are the radial and axial coordinates, respec-
tively, and r0 is the radius of the central ring elec-
trode.An stands for the dimensionless weight factors
for different terms. The various terms corresponding
to n 5 0, 1, 2, 3 . . . represent the multipole com-
ponents of the potential. Although several higher
order multipoles contribute to field inhomogeneity,
from the point of simplicity of computations, in the
present work, only two higher order multipoles viz.
hexapole and octopole (corresponding ton 5 3 and
n 5 4), are taken into account along with the qua-
drupole component for calculating the potential dis-
tribution inside the trap.f0 is the magnitude of the
potential applied to the ring electrode. In our present
computation we have assumed the operation of the
trap along theau 5 0 axis in the Mathieu stability
plot, that is, when the dc potential is zero. Conse-
quently,

f0 5 V0 cosVt (5)

where V0 is the 0-peak voltage of the rf potential.
Upon expanding Eq. (3), we get the final expression
for the potential distribution,fm(r , z, t), inside the
trap due to hexapole and octopole superposition that is
given by

fm~r , z, t! 5
A2

r0
2 V0 cosVtFz2 2

r2

2
1

h

r0
Sz3

2
3

2
r2zD 1

f

r0
2 Sz4 2 3r2z2 1

3

8
r4DG

(6)

whereh 5 A3/A2 and f 5 A4/A2. HereA2, A3, and
A4 refer to the weight of the quadrupole, hexapole,
and octopole superposition. The parametersf and h
represent the strength of octopole and hexapole field
superposition relative to the quadrupole contribution.

2.2. Space charge

The potential distribution due to the rf potential
inside the trap gets distorted because of the defocus-
ing caused by the coulombic repulsion effect between
the ions when the ion density inside the trap is large.
Different models have been used in literature for
representing space charge density distribution. Li et
al. [25], in their study of trapping force in Paul traps,
have assumed a Boltzmann distribution for charge
density. Vedel et al. [26], in their computational
study, have adopted a Gaussian distribution model for
calculating the spatial and energy probability densities
of strongly confined ions in the presence of a light
buffer gas. Meis et al. [27] and Parks and Szoke [28]
have also used Gaussian distribution function for
charge density while calculating the potential due to
space charge. However, in resonance ejection studies
[29], in collision activated dissociation studies [30], or
in studies related to nondestructive measurement of
ion secular frequencies [14] dipolar excitation applied
across the endcap electrodes induces coherent motion
[31] of the center of mass of the ion cloud leading to
a more uniform charge distribution in the volume
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traversed by the oscillating ions. Schuessler and
Holder [32] have, for instance, suggested that at the
time of detection, a charge distribution can be as-
sumed uniform within the trapping volume. In the
present work we have assumed a uniform charge
distribution that produces a superimposed dc poten-
tial. The magnitude of the dc potential depends on the
number of ions present in the trapping volume and for
the axial direction it is given by [32,33]

Usc5 2
z0

2Nsc

4«0
(7)

where

Nsc5 eN

e 5 charge of electron~ 5 1.6023 102 19 C)

N 5 number of ions per cm3

«0 5 permittivity of free space

~ 5 8.8543 102 14 F/cm) (8)

2.3. Dipolar excitation

In resonance ejection experiments, the dipolar
excitation potential applied to the endcap electrode
distorts the electric field inside the trap. The pseudo-
potential well model [34] for three dimensional ion
motion incorporates an excitation term in the ion
motion equation for representing the excitation poten-
tial corresponding to the excitation potentialUexc(r ,
z, t). This excitation term needs to be weighted by the
dipolar superposition [23] and can be represented by

Uexc~r , z, t! 5 A1Vs sin ~vt!F z

r0
G (9)

whereA1 is the weight of dipole superposition and
can be calculated by the data given by Beaty [22] and
v is the angular frequency of the dipolar excitation
potential that is applied to the endcap. It may be
recalled that this angular frequency,v, corresponds to
the perturbed frequency of the ions within the non-
ideal trap.

2.4. Damping

A buffer gas used for damping the ion motion
inside the trap has been observed by Stafford et al.
[35] to improve the resolution of the mass spectrum
and the anharmonic motion of ions in Paul traps with
light buffer gas has been studied by Sugiyama and
Yoda [36]. Goeringer et al. [37] presented a method
by which a damping term can be included in the
equation of ion motion in terms of the reduced
collision frequency. Makarov [21] has also used a
similar expression to calculate the damping in terms
of reduced collisional frequency,c(du/dt), wherec is
given by

c 5
mn

m 1 mn

p

kTb

e

2«0
Îa

m 1 mn

mmn
(10)

wherem is the mass of analyte ion,mn is the mass of
neutral bath gas,a is the polarizability of the bath gas
(a 5 0.223 10240 Fm2), «0 is the relative permitiv-
ity of the free space («0 5 8.8543 10212 F/m),Tb is
the temperature of the bath gas, andp is the pressure
of the bath gas in Pascals. We have used this expres-
sion for computing the damping term.

3. Equation of ion motion

In classical mechanics, the three-dimensional mo-
tion of an ion within a pseudopotential well [34] with
excitation potential applied to the endcap electrode is
given by

m
d2r

dt2
1 e¹Ueff~r , z! 5 2e¹Uexc (11)

wherer is the ion position vector and

Ueff~r , z! 5
1

2

e

m KUE
t

¹f dtU2L (12)

To evaluateUeff, Eq. (6), is easily integrated under
the assumption V0 .. U0. When this assumption is
made,Ueff takes the form
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Ueff~r , z! 5
1

8Sqz
2V2

8 D
3 Sm

eD S4z2 1
12h

r0
z2 1

16f

r0
2 z4D (13)

It may be seen that the first bracketed term in Eq. (13)
corresponds to the square of the secular frequency of
the ions (v0

2) in the absence of dc potential. However,
since the dc bias produced by the space charge is
equivalent to a dc potential applied across the endcap
electrode [33] the secular frequency will now have to
be computed from Eq. (2).

Substituting Eqs. (9) and (13) into Eq. (11) and
including space charge and damping in the resulting
equation, we get the following equation of ion motion
in the axial direction

d2z

dt2
1 2m

dz

dt
1 v0

2z 1
9h

2r0
v0

2z2

1
8f

r0
2 v0

2z3 5 2 Fs cos~vt! (14)

where

v0
2 5 Saz 1

qz
2

2 D V2

4
(15)

az 5
8eUsc

mr0
2V2, qz 5

4eV0

mr0
2V2 (16)

Fs 5
eA1Vs

mr0
(17)

m 5
c

2
(18)

One major approximation in the development of
Eq. (14) is the omission of nonlinear coupling terms
involving the radial coordinate. As has been pointed
out in Sec. 1, practical traps have been known to
produce coupling not only between rf drive frequency
and secular motion but also coupling between radial
and axial motion. The consequence of these couplings
is the observation of sidebands on the rf drive fre-
quency as well as harmonics [9,10] in secular motion
and these observations in turn have been used to

explain nonlinear resonances in practical traps. How-
ever, from the point of view of simplicity of analysis
(coupled differential equations involvingr2z andz2r
terms, for instance, are not amenable to easy mathe-
matical analysis) we have chosen to ignore terms
involving radial coordinates.

It must also be emphasized here that Eq. (14) has
been developed on the basic premise that the ions are
oscillating in the trap within a pseudopotential well.
Consequently, the results obtained in the present
computations are valid forqz values of up to 0.4.

4. Estimation of perturbed frequency, v

For calculating the perturbed frequencyv from Eq.
(14), we introduce a new dimensionless dependent
variablex, with the substitution

z 5 xr0 (19)

Substituting (19) into Eq. (14) we get

d2x

dt2
1 2m

dx

dt
1 v0

2x 1 a2x2 1 a3x3 5 2 k cos~vt!

(20)

where

a2 5
9hv0

2

2
(21)

a3 5 8fv0
2 (22)

k 5
Fs

r0
(23)

The final equation of motion of the ions in the axial
direction has the form

z̈ 1 hż 1 F~ z! 5 G~t! (24)

whereh is the damping constant,F( z) is the restoring
term, andG(t) is the forcing term. In mathematical
literature, equations of this form are known as forced
Duffing equations with damping [38,39]. The solution
to this type of Duffing equation without damping
using a perturbation technique has been discussed for
linear and cubic terms in the restoring term by Nayfeh
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[40] and Frehlich and Novak [41] and for linear and
quadratic terms by McLachlan [5]. Nayfeh and Mook
[42] have dealt with the case of a system having
quadratic nonlinearity along with the linear and cubic
terms in the restoring terms, as occurs in betatron
oscillations. In an earlier study [43] we had adopted
the Lindstedt–Poincare´ technique for the Duffings
equation without damping. However, we found it
difficult to extend this technique to obtain an expres-
sion for perturbed secular frequency in the present
case for three reasons. First, using this method, we get
an implicit expression involving perturbed frequency.
Second, since a large number of effects are incorpo-
rated in the equation of ion motion, they all need to be
ordered if their relative contributions are to be simul-
taneously perceived. And finally, because the Lindst-
edt–Poincare´ technique used by us earlier demands
that the perturbation parameter be small, we cannot a
priori ascertain the strength of this parameter when all
nonlinear effects are involved. In view of these
observations, we chose a modified Lindstedt–Poin-
carétechnique proposed by Cheung et al. [44] and an
ordering scheme proposed by Nayfeh and Mook [42].

The basic assumption of the Lindstedt–Poincare´
perturbation technique to the solution of the differen-
tial equation is to assume that the nonlinear terms in
Eq. (20) change the secular frequency of the system
from its ideal value ofv0 to perturbed secular fre-
quencyv. Before applying perturbation it is necessary
to order the damping coefficient, the nonlinearity, and
the external excitation in such a way that their effects
appear simultaneously in the same perturbation
scheme. Following Nayfeh and Mook [42], if we let
x 5 eu (where u is also a dimensionless displace-
ment) it is necessary to order damping ase2u and
excitation ase3k cos(vt). This ordering scheme is
valid for the primary resonance condition (that is,
when v > v0). With this ordering scheme the
equation of ion motion becomes

d2u

dt2
1 2e2m

du

dt
1 v0

2u 1 ea2u
2 1 e2a3u

3

5 2 e2k cos~vt! (25)

Here e is a small dimensionless parameter. It is
introduced into the above equation as a book-keeping
device [45], and will be set to unity in the final
solution.

The first step in the Lindstedt–Poincare´ method is
to introduce a dimensionless timet into the Eq. (25)
by means of the following transformation

t 5 vt, (26)

which changes Eq. (25) into

v2 d2u

dt2 1 2mv e2 du

dt
1 v0

2u 1 ea2u
2 1 e2a3u

3

5 2 e2k cost (27)

In the normal Lindstedt–Poincare´ perturbation pro-
cedure,e is chosen as a perturbation parameter for
solving Eq. (27) and the variablesv and u are
expanded as an asymptotic series in terms ofe as

v 5 O
n50

`

envn (28)

u 5 O
n50

`

enun (29)

Because of the ordering scheme we followed,v1

becomes zero in the conventional Lindstedt–Poincare´
method. Consequently, in the modified Lindstedt–
Poincare´ method a new scaled perturbation parameter
g in terms ofv2 is introduced in accordance with [44]
and is given by

g2 5
e2v2

v0
4 1 e2v2

(30)

This requires the frequencyv to be expressed as the
fourth power in the asymptotic series expansion
involving the new perturbation parameterg. The
asymptotic series expansion for the variablesv andu
in terms of the new perturbation parameterg are given
by [44]

v4 5
v0

4

1 2 g2 ~1 1 d3g3 1 d4g4 1 . . . ! (31)
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u 5 O
n50

`

ungn (32)

Here d i ’s are the coefficients of the higher order
perturbation parameterg that must be determined for
computing the perturbed frequency. However, be-
cause we have truncated the series up to and inclusive
of g2 in our computation, we do not need to calculate
d i ’s. With the introduction of the new perturbation
parameterg, the solution will be valid even ife is very
large, becauseg 3 1 ase 3 `.

In order to computev2, Eqs. (31) and (32) are
substituted into Eq. (27), and the coefficients of like
powers of g are equated. Thus we get a set of
differential equations that can be successively solved
for un andv2 by assuming a general solution [44] as

u0 5 A cosvt 1 B sin vt (33)

whereA andB are dimensionless arbitrary numbers.
The value ofv2 can now be derived as [46]

v2 5 H3

2
v0

2a3~ A2 1 B2! 2
10

6
a2

2~ A2 1 B2!J
1

4v0
3mB

A
1

2v0
2k

A
(34)

where

A 5
z

r0
(35)

B 5
2k 1 Îk2 2 16v0

2m2A2

4v0m
(36)

In our calculation we have assumed the ion to be near
the surface of the endcap electrode (i.e.z 5 z0)
where the nonlinearity will be maximum. There is one
point to be noted in Eq. (36) in relation to our choice
of the sign of the discriminant. We have used the
positive sign for the discriminant for computingB
because using the negative sign gave unobserved
large frequency shifts.

Neglecting the powers ofg more than two in Eq.
(31), we get the following as the final expression for
the perturbed frequencyv:

v 5 v0F1 1 S v2

4~v0
4 1 v2!

DG (37)

5. Contribution of trap nonideality to frequency
perturbation

Before we go into the details of the influence of
nonidealities of the practical trap on perturbing ion
axial secular frequency we will digress in order to
understand what Eq. (37) signifies in practical traps.
This will also help us to test the conformity of our
results to those available in mathematical literature.

It is well known in mechanical systems [5] as well
as in nonlinear Paul traps [21] that nonidealities in the
equation of ion motion distorts the normally symmet-
ric amplitude frequency curve (referred to as the
frequency response curve in literature). The magni-
tude of the response curve as well as its specific shape
depends on the excitation force as well as the weights
and the sign of nonlinear terms. These curves have
been used to explain mass resolutions observed in
forward and reverse scans in practical traps based on
the “jump” phenomenon known to be exhibited by
nonlinear systems [21].

In order to have physical insight as to what the
perturbed frequency we developed means in the
context of nonideal Paul traps we will rewrite Eq. (37)
to take the form of a frequency response curve. This
is done by first expressing Eq. (37) in terms ofv2 as

v2 5 v0
2F1 1 S v2

~v0
4 1 v2!

DG1/2

(38)

Next, we expand the square bracket as a power series
up to the first term to get,

v2 5 v0
2F1 1 S v2

2~v0
4 1 v2!

DG (39)

In order to compare our results with the well
studied example we restrict our system to an example
in mathematical literature [5] by setting damping,
space charge, and hexapole term to zero (i.e.N, c,
a2 5 0) and consider only the octopole superposition
and dipolar excitation. Further, becausev2 is very
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small compared tov0
4 in the denominator in Eq. (38),

v2 is also ignored. With these substitutions Eq. (39)
reduces to

v2 5 v0
2F1 1

3a3A
2

4v0
2 1

k

v0
2AG (40)

This expression is identical to the expression devel-
oped by McLachlan [5] and corresponds to the fre-
quency response curve for a forced Duffing equation
with cubic nonlinearity. This equation is cubic inA
and the real roots have the form shown in curve (a) of
Fig. 1. A family of such curves are obtained for
different values of dipolar excitation amplitude. All
these curves show the humpback nature with the
direction of the skew being determined by the sign of
the octopole superposition.

To identify the stationary point where the tangent
becomes parallel to theA axis corresponding to the
jump phenomenon, following McLachlan [5], we
differentiate Eq. (40) with respect toA (i.e. dv/dA)
and equate the resulting expression to zero. By doing
this we get

6a3A
2

4v0
2 5

k

A
(41)

Substituting Eq. (41) into Eq. (40) we obtain an
expression forv2, which is given by

v2 5 v0
2 1

9a3A
2

4v0
2 (42)

Eq. (42) is again identical to the expression developed
by McLachlan [5] and represents both the perturbed
frequency as well as the loci of the stationary points at
which the jump phenomenon takes place in non-linear
Paul traps. This curve has been plotted as curve (b) in
Fig. 1.

A second example of the conformity of Eq. (37) to
results in mathematical results is to consider the case
when damping, dipolar excitation, and space charge
are set to zero. Eq. (37) now takes the form

v 5 v0F1 1
~9v0

2a3 2 10a2
2! A2

24v0
4 G (43)

that is identical to the expression we derived in a
previous work [43] and developed in Nayfeh [40] for
a free Duffing oscillator with quadratic and cubic
nonlinearity.

Eq. (37) is an expression of the contribution of
geometric aberration, space charge, damping, and
dipolar excitation to the overall frequency perturba-
tion. Whereas Eq. (37) will be used in all computa-
tions below, in this section, in order to understand the
effect of different parameters on perturbing the secu-
lar frequency, Eq. (34) will be adequate to study the
details of each term ofv2.

Different terms in Eq. (34) represent the shifts in
the axial secular frequency caused by a combination
of nonidealities. We will now examine the terms of
Eq. (34) one by one in the following paragraphs.

The first term in Eq. (34) after the substitution of
appropriate values for different variables is given by

12v0
4 fFz2

r0
2

1 1 2
eA1Vs

mr0
2 1

1

r0
Îe2A1

2Vs
2

m2 2 4v0
2c2z2

2v0c
2

2

4
(44)

Fig. 1. Figure shows the frequency response and jump phenomenon
of Eq. (40).
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The above expression represents the effect of octopole
superposition on secular frequency. It shows that the
shift in secular frequency varies linearly with the
strengthf of octopole superposition. This term also
indicates that the shift in secular frequency is depen-
dent on the sign of octopole superposition. The shift
will increase from its ideal value if the octopole
superposition is positive and decrease from its ideal
value if it is negative. The first term inside the square
bracket (z2/r0

2) implies that the shift in secular fre-
quency depends on the axial position of the ion and
that it will be maximum when the ions are near the
surface of the endcap electrodes (i.e.z 5 z0). The
second term inside the square bracket arises because
of excitation and damping. This term is at its maxi-
mum value when the discriminant is zero and mini-
mum when damping is zero. Becausec is related to
pressure through Eq. (10), an increase in the pressure
of the damping gas increases the shift in secular
frequency. In the absence of damping, the excitation
potential will not have any effect on this term and the
shift will be entirely due to the strengthf of octopole
superposition.

The second term in Eq. (34) when expanded takes
the following form

2
10

6 S9hv0
2

2 D2 Sz2

r0
2

1 12
eA1Vs

mr0
2 1

1

r0
Îe2A1

2Vs
2

m2 2 4v0
2c2z2

2v0c
2

2

(45)

The above expression indicates that secular fre-
quency varies quadratically with the hexapole weight
factorh and consequently is insensitive to the sign of
the superposition. Because Eq. (45) has a negative
sign, the shift will increase in the negative direction
with an increase in the hexapole superposition. The
above expression also shows that under a fixed set of
experimental conditions, the shift in secular frequency
will be governed by the axial position of the ions, the
amplitude of the excitation potential, and the pressure
of the neutral bath gas.

When the third term in Eq. (34) is expanded we get

Sv0
2r0

z
DF2

eA1Vs

mr0
2 1

1

r0
Îe2A1

2Vs
2

m2 2 4v0
2c2z2G (46)

This term makes a contribution to the frequency
perturbation through the magnitude of dipolar excita-
tion, position, ion mass, and damping. In the absence
of damping this term does not contribute to frequency
perturbation. It may be noted that the first part of Eq.
(46) is identical to (with a negative sign and half its
magnitude) the fourth term of Eq. (34), which is
expanded below:

2v0
2eA1Vs

mr0z
(47)

Eq. (46) will have a maximum value when the
discriminant ofB is zero, that is, wheneA1Vs/m 5
2v0cz. Under this condition the net contribution of
Eqs. (46) and (47) will be half the magnitude of Eq.
(47) and the frequency perturbation will vary linearly
with dipolar excitation.

6. Results and discussion

It is evident from Eq. (37) that in practical traps the
perturbation in secular frequency arises out of a
complex interplay of different experimental parame-
ters. Four of these parameters are incorporated in the
equation of motion in the present article. In order to
test the conformity of the expression we derived to the
reported experimental and simulation observations,
we plotted curves representing the variations in fre-
quency with the different experimental parameters.
Most of the figures represent perturbed frequency as a
ratio, v/v0, whereas Figs. 5 and 9 represent the
perturbed frequency as (v 2 v0) for the purpose of
clarity. Figs. 2–4 brings out the frequency perturba-
tion due to geometric aberration. Fig. 5 indicates the
effect of charge density within the trap whereas Figs.
6 and 7 indicate frequency perturbation due to dipolar
excitation potential. Figs. 8 and 9 show the variation
of frequency perturbation due to damping and axial
position of the ions, respectively. In all the figures,
unless specified otherwise, the variables have the
following values:f 5 h 5 0.01, Vs 5 300 mV02p,
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p 5 3 3 1026 Pascal,V 5 1.0 MHz, and Vrf 5
300 V02p.

Fig. 2 shows the shift in secular frequency (v/v0)
versus mass for different values of multipole super-
position. In these curves Vrf has been fixed at 300
V02p and each mass is oscillating at its own secular
frequency corresponding to this potential (for instance
secular frequencyv0 for 300 Th corresponding to a
drive potential of 300 V02p is 71.1 kHz withqz 5
0.1995,whereasv0 for 600 Th is 35.3 kHz withqz 5
0.0998). From Fig. 2 it can be seen that positive
octopole superposition shifts the secular frequency in
the positive direction whereas the hexapole superpo-
sition shifts the secular frequency in the negative
direction. Similar behavior was also reported by
Franzen [47,48] and Franzen et al. [11] in their
simulation studies. It can also be observed that for a
given weight of hexapole and octopole superposition,
octopole superposition plays a dominant role in shift-
ing the secular frequency. This plot also shows the
dependence of secular frequency shift on the sign of
the octopole superposition (curves corresponding to

f 5 10.03 andf 5 20.03). Theeffect of hexapole
superposition on shifting the secular frequency is
weaker than the effect produced by negative octopole
superposition (curves corresponding tof 5 20.03,
h 5 0, and f 5 0.0, h 5 0.3). These observations
match the results obtained by Franzen [48] in his
studies of mass selective instability scan with multi-
pole superposition. Cox et al. [49] have also found
mass-dependent mass shifts in their study of charac-
teristics of quadrupole ion traps at high resolution.
The small shift observed in the curve even when there
is no field aberration, i.e. whenf 5 h 5 0, is caused
by excitation potential and damping.

Fig. 3 is a plot of the shift in secular frequency
(v/v0) versus mass at different multipole superposi-
tions whenv0 is fixed at 100 kHz for all masses. In
these computations, Vrf is varied in the computations
in order to bring the secular frequency of each mass to
resonate with the dipolar excitation. This is a situation
encountered in resonance ejection experiments. This
plot is intended to show that for a given mass, the
frequency shift will be different at differentqz values

Fig. 2. Shift of secular frequency for different values of multipole superposition when Vrf 5 300 V02p.
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on the Mathieu stability plot. This may be seen by
contrasting Fig. 3 with Fig. 2. The value ofv/v0 at
mass 300 Th in Fig. 3 (plotted forqz 5 0.2784) is
1.018 for the curve corresponding tof 5 h 5 0.01,
whereas itsv/v0 value is 1.021 whenqz 5 0.1995
(in Fig. 2) for the same field aberration. The effect of
frequency shifts at different secular frequencies of 50
kHz (qz 5 0.1408), 100 kHz (qz 5 0.2784), and
150 kHz (qz 5 0.4094) fordifferent masses may be
seen in Fig. 4. Here the field aberration has been kept
at f 5 h 5 0.01 and theexcitation potential is fixed
at 0.5 V02p. In this plot it can be seen that at a
particular operating point, the shift in secular fre-
quency is higher at lower masses than at higher
masses. These observations are of relevance when
choosing dipolar excitation frequencies in resonance
ejection experiments.

We next turn our attention to the effect of charge
density on frequency perturbation. Dawson [4] has
investigated the space charge limit within the Paul
trap using the Dehmelt model that invokes the Poisson
relation and has estimated that the maximum ion
density within the trap is of the order of 107 ions/cm3.

In view of this we have plotted in Fig. 5 (v 2 v0)
values for a situation when the number of ions within
the trap varies from 106 to 107.

Here too the computations have been done keeping
the resonance ejection experiments in mind, and the
unperturbed secular frequency of the ions has been
fixed at 100 kHz. Nappi et al. [14], reporting on their
image detection studies of frequency shift due to
space charge, observed that there will be a decrease in
frequency in ion oscillations when the number of ions
inside the trap increases (see Fig. 5 for masses 100,
300, 500, 750, and 1000 Th). It can be seen that the
perturbation in the secular frequency is higher for
lower masses than for higher masses. Further, the
perturbation increases linearly with an increase in the
number of ions. The effect of space charge in shifting
ion secular frequency has been shown to be mass
dependent by Todd et al. [50] in their experimental
studies. A similar observation has also been made by
Fulford et al. [51] while studying the resonance
ejection of ions in a 3-D quadrupole ion trap.

Fig. 6 represents the effect of the magnitude of
dipolar excitation potential on the ion secular fre-

Fig. 3. Shift of secular frequency for different values of multipole superposition whenv0 5 100 kHz for all masses.
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quency. It may be recalled that this potential has the
effect of distorting the electric field inside the trap
leading to perturbation in secular frequency. Curves

have been plotted for a variation of Vs from 0.3 to 1
V02p and for masses corresponding to 300, 500, 750,
and 1000 Th. It may be seen that higher excitation

Fig. 4. Shift of secular frequency at different operating points in the Mathieu stability plot.

Fig. 5. Shift of secular frequency vs. the number of ions in the trap.
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voltages increase the shift in ion secular frequencies
irrespective of ion mass. For a given value of the
dipolar excitation potential and other nonlinear pa-
rameters, at a given operating point in the Mathieu
stability plot, the shift in the secular frequency should
be larger for lower masses than for higher masses (as
seen in Fig. 4). Kaiser et al. [52] and Cox et al. [49]
have reported mass shift caused by dipolar excitation
in resonance ejection studies in nonlinear Paul traps
where ion energetics have been used to account for
the larger delay in ejection of higher masses in
contrast to lower masses at a fixed operating condi-
tion. In a specific experiment, Kaiser et al. [52] have
pointed out that lower masses experience larger ab-
solute mass shifts in contrast to higher masses where
the apparent mass shift is lower. Fig. 7 provides more
detailed insight as to the perturbation of ion secular
frequency when a particular mass is oscillating at a
different qz value on the Mathieu stability plot. The
different plots in this figure show frequency shifts for
mass 300 Th whenv0 is 50 kHz (qz 5 0.1408), 100
kHz (qz 5 0.2784), and 150 kHz (qz 5 0.4094).
This plot also shows that asqz increases the depen-

dence of frequency shift on excitation potential be-
comes less pronounced.

Fig. 8 shows the variation ofv/v0 for different
masses under different values of the bath gas pressure
when v0 is fixed at 100 kHz (qz 5 0.2784) and
Vs 5 300 mV02p. As the pressure increases for a
given dipolar excitation potential, the shift in secular
frequency also increases for all masses. Although
there is a perceptible difference at higher masses, the
difference is negligible at lower masses. Guan and
Marshall [25] have also discussed the effect of bath
gas pressure shifting the ion secular frequency. In
their study too, it has been seen that an increase in
pressure results in larger frequency shifts although the
shift is in the negative direction. This negative shift
may also be anticipated in our computation from a
study of Eq. (36). However, because dipolar excita-
tion potential also plays a part in perturbing the
secular frequency (Figs. 6 and 7) the overall shift due
to increase in pressure at a fixed dipolar excitation
potential results in a shift in the positive direction.

Finally, Fig. 9 shows the absolute shift in secular
frequency (v 2 v0) with respect to the axial position

Fig. 6. Shift of secular frequency for different values of dipolar excitation when Vrf 5 300 V02p.
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for ions of different mass whenv0 is fixed at 100 kHz
(qz 5 0.2784). They axis shows an absolute value
of shift in secular frequency (in Hz) because the

difference could not easily be seen in av/v0 plot. For
generating these curves, we have assumed that there is
no excitation or damping. The shift, which is zero at

Fig. 7. Shift of secular frequency form 5 300 Th at different operating points in the Mathieu stability plot.

Fig. 8. Shift of secular frequency for different pressures of damping bath gas.
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the center of the trap (i.e. the field is purely quadru-
polar), increases as the axial distance increases. This
was pointed out by Franzen [47] in his simulation
studies of an ion cage with superimposed multipole
fields. A similar result was obtained by Splendore et
al. [53] in their simulation study of ion kinetic
energies during resonance excitation experiments.
Fig. 9 also shows that the shift in secular frequency
increases with an increase in the axial distance–more
in the case of lower masses than with higher masses.
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